<div>Bottlebrush polymers are a class of macromolecules that has recently found use</div><div>in a wide variety of materials, ranging from lubricating brushes and</div><div>nanostructured coatings to elastomeric gels that exhibit structural color. These</div><div>polymers are characterized by dense branches extending from a central backbone,</div><div>and thus have properties distinct from linear polymers. It remains a challenge</div><div>to specifically understand conformational properties of these molecules, due to</div><div>the wide range of architectural parameters that can be present in a system, and</div><div>thus there is a need to accurately characterize and model these molecules. In</div><div>this paper, we use a combination of viscometry, light scattering, and computer</div><div>simulations to gain insight into the conformational properties of dilute</div><div>bottlebrush polymers. We focus on a series of model bottlebrushes consisting of</div><div>a poly(norbornene) (PNB) backbone with poly(lactic acid) (PLA) side chains. We</div><div>demonstrate that intrinsic viscosity and hydrodynamic radius are experimental</div><div>observations \emph{sensitive} to molecular architecture, exhibiting distinct</div><div>differences with different choices of branch and backbone lengths. Informed by</div><div>the atomistic structure of this PNB-PLA system, we rationalize a coarse-grained</div><div>simulation model that we evaluate using a combination of Brownian Dynamics and</div><div>Monte Carlo simulations. We show that this exhibits quantitative matching to</div><div>experimental results, enabling us to characterize the overall shape of the</div><div>bottlebrush via a number of metrics that can be extended to more general</div><div>bottlebrush architectures.</div>