Multivalent polyions can undergo complex coacervation, producing membraneless compartments that accumulate ribozymes and enhance catalysis, and offering a mechanism for functional prebiotic compartmentalization in the origins of life. Here, we evaluated the impact of low, prebiotically-relevant polyion multivalency in coacervate performance as functional compartments. As model polyions, we used positively and negatively charged homopeptides with one to 100 residues, and adenosine mono-, di-, and triphosphate nucleotides.Polycation/polyanion pairs were tested for coacervation, and resulting membraneless compartments were analyzed for salt resistance, ability to provide a distinct internal microenvironment (apparent local pH, RNA partitioning), and effect on RNA structure formation. We find that coacervates formed by phase separation of the relatively shorter polyions more effectively generated distinct pH microenvironments, accumulated RNA, and preserved duplexes. Hence, reduced multivalency polyions are not only viable as functional compartments for prebiotic chemistries, but they can offer advantages over higher molecular weight analogues.