“…Since the recent emergence of this hybrid particle, three different models, in particular, have helped to unravel the physics of CMPs over the last years: first, the picture of two coupled oscillators, which is the most intuitive one; the underlying physics, however, is only revealed from an electromagnetic viewpoint, which is the second model and shows a phase correlation between cavity and magnon excitation [9]; and finally, the quantum description of the CMP, which has, for instance, given the theoretical framework for a coupling of magnons to a superconducting qubit [10,11]. Many spectroscopic experiments have led to new insights about loss channels [3,12,13], their temperature dependence [14][15][16], and to the observation of level attraction [17][18][19]. These spectroscopic measurements, however, are performed under continuous driving, and while they have yielded great physical insight into these hybrid systems, flexible and universal information processing requires the manipulation of such physical * tim.wolz@kit.edu † martin.weides@glasgow.ac.uk states on demand and on nanosecond timescales.…”