Interpretable and Robust Machine Learning for Exploring and Classifying Soundscape Data
Arpit Omprakash,
Rohini Balakrishnan,
Robert Ewers
et al.
Abstract:The adoption of machine learning in Passive Acoustic Monitoring (PAM) has improved prediction accuracy for tasks like species-specific call detection and habitat quality estimation. However, these models often lack interpretability, and PAM generates vast amounts of non-informative data, as soundscapes are typically information sparse. Here, we developed ecologically interpretable methods that accurately predict land use from audio while filtering unwanted data. Audio from habitats in Southern India (evergreen… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.