Abstract:Explainable AI (XAI) aims to address the opacity of deep learning models, which can limit their adoption in critical decision-making applications. This paper presents a novel framework that integrates interpretable components and visualization techniques to enhance the transparency and trustworthiness of deep learning models. We propose a hybrid explanation method combining saliency maps, feature attribution, and local interpretable model-agnostic explanations (LIME) to provide comprehensive insights into the … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.