2024
DOI: 10.1007/s10618-024-01015-0
|View full text |Cite
|
Sign up to set email alerts
|

Interpretable linear dimensionality reduction based on bias-variance analysis

Paolo Bonetti,
Alberto Maria Metelli,
Marcello Restelli

Abstract: One of the central issues of several machine learning applications on real data is the choice of the input features. Ideally, the designer should select a small number of the relevant, nonredundant features to preserve the complete information contained in the original dataset, with little collinearity among features. This procedure helps mitigate problems like overfitting and the curse of dimensionality, which arise when dealing with high-dimensional problems. On the other hand, it is not desirable to simply … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 46 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?