2023
DOI: 10.1007/s12553-023-00730-w
|View full text |Cite
|
Sign up to set email alerts
|

Interpretable machine learning analysis to identify risk factors for diabetes using the anonymous living census data of Japan

Abstract: Purpose Diabetes mellitus causes various problems in our life. With the big data boom in our society, some risk factors for Diabetes must still exist. To identify new risk factors for diabetes in the big data society and explore further efficient use of big data, the non-objective-oriented census data about the Japanese Citizen’s Survey of Living Conditions were analyzed using interpretable machine learning methods. Methods Seven interpretable machine lear… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 57 publications
0
0
0
Order By: Relevance