Interpretable machine learning model based on CT semantic features and radiomics features to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors
Yating Wang,
Genji Bai,
Yan Liu
et al.
Abstract:To develop and validate a machine learning (ML) model which combined computed tomography (CT) semantic and radiomics features to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors (GISTs) patients. We retrospectively collected the clinical, imaging and pathological data of 149 GISTs patients. We randomly assigned the patients in a ratio of 7:3 to a training set (104 cases) and a validation (45 cases) set. We divided the patients into low and high Ki-67 expression group according to post… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.