2022
DOI: 10.48550/arxiv.2202.04943
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Interpretable pipelines with evolutionarily optimized modules for RL tasks with visual inputs

Leonardo Lucio Custode,
Giovanni Iacca

Abstract: The importance of explainability in AI has become a pressing concern, for which several explainable AI (XAI) approaches have been recently proposed. However, most of the available XAI techniques are post-hoc methods, which however may be only partially reliable, as they do not reflect exactly the state of the original models. Thus, a more direct way for achieving XAI is through interpretable (also called glass-box) models. These models have been shown to obtain comparable (and, in some cases, better) performan… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 23 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?