This study was carried out to determine the methods that bear the most realistic results in predicting the number of fires and burned area under the climate conditions in future. Different indices and statistical methods were used in predicting the burned area and the number of fires. With this aim, in addition to the indices used in estimating the climate, Machine Learning and multivariate adaptive regression spline (MARS) models are also used in predicting these factors. According to the results obtained in several studies, the relationship between the drought and fire indices burned area and the number of fires changes from region to region. While better results are obtained in predicting the burned area and the number of fires via the drought indices being used in this study and the MARS models that the combinations of these indices use, it is seen that a 30-39% success was achieved for predicting the amount of burned area via Machine Learning methods (Kernel Nearest Neighbor (kNN), Recursive Partitioning and Regression Trees (RPART), Support Vector Machine (SVM) and RF), and this success ranges widely from 8 to 41% in terms of the number of fires. RPART, of these four algorithms, performed the best in fire prediction, but kNN was the worst.