This work revealed the role of altering vanadium (V) content in Mn–Zn ferrites. We used the traditional solid-state reaction method to prepare the Mn_0.5 Zn_0.5 V_x Fe_(2 - x) O_4 (x = 0.0, 0.05, 0.10, 0.15, 0.20) ferrites. Powder X-ray diffraction was used to analyze the samples' crystal structures, revealing the prepared sample's spinal cubic crystal structure. With increasing Vanadium concentration, the lattice constant drops proportionately. We used Debye-Scherrer (D-S), Williamson-Hall (W-H) Plot, Halder-Wagner (H-W) Langford, and Size Strain Plot (SSP) methods to compare different structural properties. We also used the impedance analyzer to investigate the samples' dielectric characteristics and AC conductivity at room temperature over a frequency range of 1 KHz to 100 MHz. The magnetic properties, i.e., Saturation magnetization (Ms), Coercive field (Hc), and Remanent magnetization (Mr), were estimated from the ferromagnetic hysteresis behavior of the samples measured using a vibrating sample magnetometer (VSM). The saturation magnetization was observed to decrease with an increase in V content. The Mr and HC vary non-linearly with V contents. The prepared samples' initial permeability was tested, and a reasonably constant complex permeability (µ') was recorded over a wide frequency range (~ 1000 Hz).