The goal of the research reported here was to investigate whether the design methodology utilising embodied agents can be applied to produce a multi-modal human–computer interface for cyberspace events visualisation control. This methodology requires that the designed system structure be defined in terms of cooperating agents having well-defined internal components exhibiting specified behaviours. System activities are defined in terms of finite state machines and behaviours parameterised by transition functions. In the investigated case the multi-modal interface is a component of the Operational Centre which is a part of the National Cybersecurity Platform. Embodied agents have been successfully used in the design of robotic systems. However robots operate in physical environments, while cyberspace events visualisation involves cyberspace, thus the applied design methodology required a different definition of the environment. It had to encompass the physical environment in which the operator acts and the computer screen where the results of those actions are presented. Smart human–computer interaction (HCI) is a time-aware, dynamic process in which two parties communicate via different modalities, e.g., voice, gesture, eye movement. The use of computer vision and machine intelligence techniques are essential when the human is carrying an exhausting and concentration demanding activity. The main role of this interface is to support security analysts and operators controlling visualisation of cyberspace events like incidents or cyber attacks especially when manipulating graphical information. Visualisation control modalities include visual gesture- and voice-based commands.