We study intersection cohomology of character varieties for punctured Riemann surfaces with prescribed monodromies around the punctures. Relying on a previous result from Mellit [Mel20a] for semisimple monodromies we compute the intersection cohomology of character varieties with monodromies of any Jordan type. This proves the Poincaré polynomial specialization of a conjecture from Letellier [Let15].
Résumé (Cohomologie d'intersection des variétés de caractères des surfaces de Riemann épointées)Nous étudions la cohomologie d'intersection des variétés de caractères des surfaces de Riemann épointées, la monodromie autour des points enlevés étant fixée. En nous appuyant sur un résultat de Mellit [Mel20a] pour des monodromies semi-simples, nous calculons la cohomologie d'intersection des variétés de caractères avec des monodromies ayant un type de Jordan quelconque. Ceci prouve la spécialisation au polynôme de Poincaré d'une conjecture de Letellier [Let15].