Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In 1993, N. Danikas and A. G. Siskakis showed that the Cesàro operator ${\mathcal{C}}$ is not bounded on $H^{\infty }$ ; that is, ${\mathcal{C}}(H^{\infty })\nsubseteq H^{\infty }$ , but ${\mathcal{C}}(H^{\infty })$ is a subset of $BMOA$ . In 1997, M. Essén and J. Xiao gave that ${\mathcal{C}}(H^{\infty })\subsetneq {\mathcal{Q}}_{p}$ for every $0<p<1$ . In this paper, we characterize positive Borel measures $\unicode[STIX]{x1D707}$ such that ${\mathcal{C}}(H^{\infty })\subseteq M({\mathcal{D}}_{\unicode[STIX]{x1D707}})$ and show that ${\mathcal{C}}(H^{\infty })\subsetneq M({\mathcal{D}}_{\unicode[STIX]{x1D707}_{0}})\subsetneq \bigcap _{0<p<\infty }{\mathcal{Q}}_{p}$ by constructing some measures $\unicode[STIX]{x1D707}_{0}$ . Here, $M({\mathcal{D}}_{\unicode[STIX]{x1D707}})$ denotes the Möbius invariant function space generated by ${\mathcal{D}}_{\unicode[STIX]{x1D707}}$ , where ${\mathcal{D}}_{\unicode[STIX]{x1D707}}$ is a Dirichlet space with superharmonic weight induced by a positive Borel measure $\unicode[STIX]{x1D707}$ on the open unit disk. Our conclusions improve results mentioned above.
In 1993, N. Danikas and A. G. Siskakis showed that the Cesàro operator ${\mathcal{C}}$ is not bounded on $H^{\infty }$ ; that is, ${\mathcal{C}}(H^{\infty })\nsubseteq H^{\infty }$ , but ${\mathcal{C}}(H^{\infty })$ is a subset of $BMOA$ . In 1997, M. Essén and J. Xiao gave that ${\mathcal{C}}(H^{\infty })\subsetneq {\mathcal{Q}}_{p}$ for every $0<p<1$ . In this paper, we characterize positive Borel measures $\unicode[STIX]{x1D707}$ such that ${\mathcal{C}}(H^{\infty })\subseteq M({\mathcal{D}}_{\unicode[STIX]{x1D707}})$ and show that ${\mathcal{C}}(H^{\infty })\subsetneq M({\mathcal{D}}_{\unicode[STIX]{x1D707}_{0}})\subsetneq \bigcap _{0<p<\infty }{\mathcal{Q}}_{p}$ by constructing some measures $\unicode[STIX]{x1D707}_{0}$ . Here, $M({\mathcal{D}}_{\unicode[STIX]{x1D707}})$ denotes the Möbius invariant function space generated by ${\mathcal{D}}_{\unicode[STIX]{x1D707}}$ , where ${\mathcal{D}}_{\unicode[STIX]{x1D707}}$ is a Dirichlet space with superharmonic weight induced by a positive Borel measure $\unicode[STIX]{x1D707}$ on the open unit disk. Our conclusions improve results mentioned above.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.