2021
DOI: 10.3390/app112411637
|View full text |Cite
|
Sign up to set email alerts
|

InterTwin: Deep Learning Approaches for Computing Measures of Effectiveness for Traffic Intersections

Abstract: Microscopic simulation-based approaches are extensively used for determining good signal timing plans on traffic intersections. Measures of Effectiveness (MOEs) such as wait time, throughput, fuel consumption, emission, and delays can be derived for variable signal timing parameters, traffic flow patterns, etc. However, these techniques are computationally intensive, especially when the number of signal timing scenarios to be simulated are large. In this paper, we propose InterTwin, a Deep Neural Network archi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?