2017
DOI: 10.48550/arxiv.1704.04998
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Interval Arithmetic and Interval-Aware Operators for Genetic Programming

Grant Dick

Abstract: Symbolic regression via genetic programming is a flexible approach to machine learning that does not require up-front specification of model structure. However, traditional approaches to symbolic regression require the use of protected operators, which can lead to perverse model characteristics and poor generalisation. In this paper, we revisit interval arithmetic as one possible solution to allow genetic programming to perform regression using unprotected operators. Using standard benchmarks, we show that usi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 10 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?