The Taylor model arithmetic is introduced to deal with uncertainty. The uncertainty of model parameters is described by Taylor models and each variable in functions is replaced with the Taylor model (TM). Thus, time domain simulation under uncertainty is transformed to the integration of TM-based differential equations. In this paper, the Taylor series method is employed to compute differential equations; moreover, power system time domain simulation under uncertainty based on Taylor model method is presented. This method allows a rigorous estimation of the influence of either form of uncertainty and only needs one simulation. It is computationally fast compared with the Monte Carlo method, which is another technique for uncertainty analysis. The proposed method has been tested on the 39-bus New England system. The test results illustrate the effectiveness and practical value of the approach by comparing with the results of Monte Carlo simulation and traditional time domain simulation.