Time perception is a fundamental cognitive function essential for adaptive behavior and shared across species. The neural mechanisms underlying time perception, particularly its neuromodulation, remain debated. In this review, we examined the role of the serotonergic system in time perception (at the scale of seconds and minutes), building a translational bridge between human and non-human animal studies. The literature search was conducted according to the PRISMA statement in PubMed, APA PsycINFO, and APA PsycARTICLES. Sixty papers were selected for full-text review, encompassing both human (n = 10) and animal studies (n = 50). Summarizing the reviewed literature, we revealed consistent evidence for the role of serotonin in timing behavior, highlighting its complex involvement across retrospective, immediate, and prospective timing paradigms. Increased serotonergic activation appears to accelerate internal time speed, which we interpret through the dual klepsydra model as accelerated discharge of the temporal accumulator. However, some findings challenge this framework. Additionally, we link impulsivity—associated with decreased serotonergic functioning in our review—to a slower internal time speed. Variability in prospective timing tasks underscores the need for further research into how serotonin modulates reward-based temporal decisions, using novel approaches to disentangle internal time speed, response inhibition, and other factors.