This study discusses the daily electricity load forecasting 24 hours on 150 kV electric power systems sulselrabar. Forecasting electrical load requires the accuracy of the results with a small error. Peak load forecasting methods used to use smart methods Interval Type-1 Fuzzy Logic (IT1FL) and Interval Type-2 Fuzzy Logic (IT2FL) to predict the needs of the electrical load 1 Ramadan 2016. As input data, it was used load data from 2012 through 2016 for the same day each 1st of Ramadan each year, and as comparative data, it was used actual load data 1, 2016. For the Ramadan input variable, it was used two of the data Variation Load Difference (VLD Max) 2015 as an input variable X, VLD Max 2016 as an input variable Y. From the simulation results obtained highly accurate results where each method produces a very small error, where for methods of using IT1FL of 1.607778264% while using IT2FL by, 1.344510913%.