RAPTOR (regulatory-associated protein of mTOR) is a pivotal component of the mammalian target of rapamycin complex 1 (mTORC1), playing a central role in regulating cell growth, metabolism and stress responses. As a scaffold protein, RAPTOR recruits key substrates such as eukaryotic initiation factor 4E-binding protein-1 (4E-BP1) and ribosomal protein S6 kinase (S6K), facilitating their phosphorylation by mTORC1, which in turn drives protein synthesis, lipid metabolism and cellular proliferation. Its regulatory function becomes especially crucial under conditions of nutrient deprivation or stress, where it enhances the stability of the mTORC1 complex, allowing cells to adapt to fluctuating environmental cues. The hyperactivation of mTORC1, largely mediated by RAPTOR, is frequently observed in various cancers, contributing to uncontrolled cell proliferation and tumorigenesis. Moreover, RAPTOR’s modulation of immune responses and metabolic pathways extends its influence beyond oncogenesis, impacting inflammatory diseases and metabolic disorders. This review meticulously elucidates RAPTOR’s structure, post-translational modifications as well as its indispensable role within the mTORC1 complex, emphasizing its regulatory functions in cellular growth, metabolic adaptation, immune response and disease pathology including oncogenesis. Furthermore, it explores emergent therapeutic avenues targeting RAPTOR-mediated mTORC1 signaling, underscoring their potential to revolutionize cancer treatment and the management of related pathophysiological conditions.