Cl self-exchange by the rabbit cortical collecting tubule (CCT) occurs via an apical anion exchanger in series with a basolateral Cl conductance. We studied the effects of organic acids on CCT Cl self-exchange. We found no evidence for transport of acid anions by the self-exchange system. Rather, Cl self-exchange was inhibited by a variety of organic acids. The degree of inhibition correlated with the chloroform/water partition coefficient and was enhanced by lowering pH, indicating inhibition by the lipid-soluble, protonated species. Inhibition by the representative acid iso-butyrate was dose-dependent and showed sidedness (basolateral > apical). Iso-butyrate also reversibly reduced transepithelial conductance without altering K permeability, suggesting inhibition of the principal cell basolateral Cl conductance. Because small organic compounds with similar lipid solubilities but no carboxyl group had no effect, both the carboxyl group and the lipid-solubility of organic acids appear to be important. The results are consistent with blockade of chloride channels by organic acids.