Background
Increased arterial stiffness has been shown to be associated with aging and cardiovascular risk factors. Speckle-tracking algorithms are being used to measure myocardial strain. We evaluated if speckle-tracking could be used to measure carotid arterial wall strain (CAS) reproducibly in healthy volunteers and then examined if CAS was lesser in individuals with diabetes.
Methods
Bilateral electrocardiography-gated ultrasound scans of the distal common carotid arteries [D-CCA] (3 cardiac cycles, 14 MHz linear probe, mean 78.7 [Standard deviation (SD) 8.9]) frames per second were performed twice (2–4 days apart) on 10 healthy volunteers to test repeatability. Differences in CAS between healthy (n=20) and diabetic subjects (n=21) were examined. Peak CAS was measured in each of 6 equal segments and averages of all segments (i.e., global average), of the 3 nearest the probe, and of the 3 farthest from the probe (i.e., far wall average) were obtained.
Results
Global CAS (intraclass correlation coefficient [ICC]=0.40) and far wall average (ICC=0.63) had the greatest test-retest reliability. The global and far wall averaged CAS were lower in diabetics (4.29% [Standard Error (SE) 0.27%]; 4.30% [SE 0.44%], respectively) than in controls (5.48% [SE 0.29%], p=0.001; 5.58% [SE 0.44%], p=0.003, respectively). This difference persisted after adjustment for age, gender, race, and hemodynamic parameters.
Conclusions
Speckle-tracking for measuring carotid arterial wall strain is feasible and modestly reliable. Diabetic subjects had a lower carotid arterial wall strain obtained with speckle-tracking when compared with healthy controls.