Objective. Decoding imagined speech from brain signals could provide a more natural, user-friendly way for developing the next generation of the brain-computer interface (BCI). With the advantages of non-invasive, portable, relatively high spatial resolution and insensitivity to motion artifacts, the functional near-infrared spectroscopy (fNIRS) shows great potential for developing the non-invasive speech BCI. However, there is a lack of fNIRS evidence in uncovering the neural mechanism of imagined speech. Our goal is to investigate the specific brain regions and the corresponding cortico-cortical functional connectivity features during imagined speech with fNIRS. Approach. fNIRS signals were recorded from 13 subjects' bilateral motor and prefrontal cortex during overtly and covertly repeating words. Cortical activation was determined through the mean oxygen-hemoglobin concentration changes, and functional connectivity was calculated by Pearson's correlation coefficient. Main results. (a) The bilateral dorsal motor cortex was significantly activated during the covert speech, whereas the bilateral ventral motor cortex was significantly activated during the overt speech. (b) As a subregion of the motor cortex, sensorimotor cortex (SMC) showed a dominant dorsal response to covert speech condition, whereas a dominant ventral response to overt speech condition. (c) Broca's area was deactivated during the covert speech but activated during the overt speech. (d) Compared to overt speech, dorsal SMC(dSMC)-related functional connections were enhanced during the covert speech. Significance. We provide fNIRS evidence for the involvement of dSMC in speech imagery. dSMC is the speech imagery network's key hub and is probably involved in the sensorimotor information processing during the covert speech. This study could inspire the BCI community to focus on the potential contribution of dSMC during speech imagery.