Dispersal, i.e. movements potentially leading to gene flow, is central in evolutionary ecology. Many factors can trigger dispersal, all linked to the social and/or the environmental context. Moreover, it is now widely demonstrated that phenotypes with contrasted dispersal abilities coexist within populations of a same species. The current challenge is to elucidate how social and environmental factors will influence the dispersal decision of individuals with distinct phenotypes. We have used the Metatron, a unique experimental mesocosm dedicated to the study of dispersal within fragmented landscapes, to analyze the relative and interactive roles played by ten potential dispersal triggers in experimental two‐patch metapopulations of butterflies. We demonstrate in our model species that some factors (flight performance and wing length) have direct effects on emigration decision, others act only through interactive effects (sex ratio), while a third class of factors presents both direct and interactive effects (weather conditions, habitat quality and sex). We also show that disperser and resident individuals have distinct behavioral and morphological attributes, revealing the existence of a dispersal syndrome. Finally, our results also suggest that the environmental context, and especially weather conditions and habitat quality, prevails over social factors and individual phenotypes in butterflies' decision to disperse. Our approach is applicable to many species facing medium to strong environmental fluctuations, and constitutes a new way to master the idiosyncrasy of the dispersal process. Our framework should also help prioritize the factors responsible for populations' spatial distribution, which is obviously crucial in the current era of global changes.