Purpose
The study aims to harness the value of radiomics models combining intratumoral and peritumoral features obtained from pretreatment CT to predict treatment response as well as the survival of LA-NPC(locoregionally advanced nasopharyngeal carcinoma) patients receiving multiple types of induction chemotherapies, including immunotherapy and targeted therapy.
Methods
276 LA-NPC patients (221 in the training and 55 in the testing cohort) were retrospectively enrolled. Various statistical analyses and feature selection techniques were applied to identify the most relevant radiomics features. Multiple machine learning models were trained and compared to build signatures for the intratumoral and each peritumoral region, along with a clinical signature. The performance of each model was evaluated using different metrics. Subsequently, a nomogram model was constructed by combining the best-performing radiomics and clinical models.
Results
In the testing cohort, the nomogram model exhibited an AUC of 0.816, outperforming the other models. The nomogram model’s calibration curve showed good agreement between predicted and observed outcomes in both the training and testing sets. When predicting survival, the model’s concordance index (C-index) was 0.888 in the training cohort and 0.899 in the testing cohort, indicating its robust predictive ability.
Conclusion
In conclusion, the combined nomogram model, incorporating radiomics and clinical features, outperformed other models in predicting treatment response and survival outcomes for LA-NPC patients receiving induction chemotherapies. These findings highlight the potential clinical utility of the model, suggesting its value in individualized treatment planning and decision-making.