During acute ruminal acidosis, the manifestation of aseptic polysynovitis and lameness in cattle has been observed. Evidence suggests that joint inflammation can be attributed to the metabolic alterations induced by D-lactate in fibroblast-like synoviocytes (FLSs). We aimed to investigate whether andrographolide could mitigate the inflammation and metabolic alterations induced by D-lactate in bovine fibroblast-like synoviocytes (bFLSs). To assess this, bFLSs were cultured in the presence or absence of andrographolide. We evaluated its potential interference with the expression of proinflammatory cytokines, COX-2, HIF-1α, and LDHA using RT-qPCR. Furthermore, we investigated its potential interference with PI3K/Akt signaling and IκBα degradation through immunoblotting and flow cytometry, respectively. Our observations revealed that andrographolide reduced the elevation of IL-6, IL-8, COX-2, HIF-1α, and LDHA induced by D-lactate. Additionally, andrographolide demonstrated interference with the PI3K/Akt and NF-κB pathways in bFLSs. In conclusion, our findings suggest that andrographolide can potentially reverse the inflammatory effects and metabolic changes induced by D-lactate in bFLSs, showing promise as a therapeutic intervention for managing these conditions associated with lameness.