2013
DOI: 10.1007/s00355-013-0762-y
|View full text |Cite
|
Sign up to set email alerts
|

Intra-group heterogeneity in collective contests

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
24
1

Year Published

2017
2017
2023
2023

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 32 publications
(25 citation statements)
references
References 23 publications
0
24
1
Order By: Relevance
“…8 We assume that the prize is a group-specific public-good (see, e.g., Baik, Kim and Na, 2001). Alternative prize distribution rules have also been explored, such as Nitzan and Ueda (2011) and Nitzan and Ueda (2014).…”
Section: Model and Theoretical Predictionsmentioning
confidence: 99%
“…8 We assume that the prize is a group-specific public-good (see, e.g., Baik, Kim and Na, 2001). Alternative prize distribution rules have also been explored, such as Nitzan and Ueda (2011) and Nitzan and Ueda (2014).…”
Section: Model and Theoretical Predictionsmentioning
confidence: 99%
“…When cifalse(afalse) is strictly convex, so is 1Ni·cifalse(afalse). Hence we can apply a result by Nitzan and Ueda () on the relation of intragroup heterogeneity and strictly convex marginal effort costs (their Proposition ) to derive the desired result.…”
Section: Proofsmentioning
confidence: 79%
“…When cifalse(afalse) is strictly convex, so is 1Ni·cifalse(afalse). Hence we can apply a result by Nitzan and Ueda () on the relation of intragroup heterogeneity and strictly convex marginal effort costs (their Proposition ) to derive the desired result. Proof of Proposition Since the contributions induced under a cost‐sharing rule are the same as in the original model, we have as the relation between each individual's contribution and the aggregate effort intended by the group leader. Because of the convexity of trueÊifalse(Ai;boldvifalse), 0true0=jiAjA2NiÊi()Ai;0.16emvi=jiAjA2Nik=1NiciaikAi;boldvivik·vikci()aik()Ai;0.16emvi0truep=1Nivipci()aip()Ai;0.16emviis a fi...…”
Section: Proofsmentioning
confidence: 83%
See 2 more Smart Citations