Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
An accurate estimation of seasonal spatiotemporal dynamics of forage phosphorus (P) content in alpine grassland is crucial for effective grassland and livestock management. In this study, we integrated Sentinel-2 multispectral imagery (MSI) with computational hyperspectral features (CHSFs) and developed a novel symbolic regression algorithm based on deep reinforcement learning and genetic programming (DRL-GP) to estimate forage P content in alpine grasslands. Using 243 field observations collected during the regreening, grass-bearing, and yellowing periods in 2023 from the Shaliu River Basin, we generated 10 CHSF images (CHSFIs) with varying spectral dispersions (1–10 nm). Our results demonstrated the following: (1) The DRL-GP-based symbolic regression model identified the optimal CHSF and spectral dispersion for each growing season, significantly enhancing estimation accuracy. (2) Forage P content estimations using the combined CHSF and DRL-GP-based symbolic regression algorithm significantly outperformed traditional methods. Compared to original spectral features, the R2 improved by 99.5%, 57.4%, and 86.2% during the regreening, grass-bearing, and yellowing periods, with corresponding MSE reductions of 84.8%, 41.5%, and 75.8% and MAE decreases of 70.7%, 57.5%, and 50.4%. Across these growing seasons, the R2 increased by 322.2%, 68.2%, and 639.8% compared to MLR, 128.9%, 97.4%, and 469.2% compared to RF, and 485.1%, 65.3%, and 231.3% compared to DNN. The MSE decreased by 31%, 82.9%, and 52.4% compared to MLR, 39.9%, 42.4%, and 31.4% compared to RF, and 84.5%, 73.4%, and 81.9% compared to DNN. The MAE decreased by 32.6%, 67%, and 44.2% compared to MLR, 42.6%, 47.6%, and 37.9% compared to RF, and 60.2%, 50%, and 56.3% compared to DNN. (3) Proximity to the water system notably influenced forage P variation, with the highest increases observed within 1–2 km of water sources. These findings provide critical insights for optimizing grassland management and improving livestock productivity.
An accurate estimation of seasonal spatiotemporal dynamics of forage phosphorus (P) content in alpine grassland is crucial for effective grassland and livestock management. In this study, we integrated Sentinel-2 multispectral imagery (MSI) with computational hyperspectral features (CHSFs) and developed a novel symbolic regression algorithm based on deep reinforcement learning and genetic programming (DRL-GP) to estimate forage P content in alpine grasslands. Using 243 field observations collected during the regreening, grass-bearing, and yellowing periods in 2023 from the Shaliu River Basin, we generated 10 CHSF images (CHSFIs) with varying spectral dispersions (1–10 nm). Our results demonstrated the following: (1) The DRL-GP-based symbolic regression model identified the optimal CHSF and spectral dispersion for each growing season, significantly enhancing estimation accuracy. (2) Forage P content estimations using the combined CHSF and DRL-GP-based symbolic regression algorithm significantly outperformed traditional methods. Compared to original spectral features, the R2 improved by 99.5%, 57.4%, and 86.2% during the regreening, grass-bearing, and yellowing periods, with corresponding MSE reductions of 84.8%, 41.5%, and 75.8% and MAE decreases of 70.7%, 57.5%, and 50.4%. Across these growing seasons, the R2 increased by 322.2%, 68.2%, and 639.8% compared to MLR, 128.9%, 97.4%, and 469.2% compared to RF, and 485.1%, 65.3%, and 231.3% compared to DNN. The MSE decreased by 31%, 82.9%, and 52.4% compared to MLR, 39.9%, 42.4%, and 31.4% compared to RF, and 84.5%, 73.4%, and 81.9% compared to DNN. The MAE decreased by 32.6%, 67%, and 44.2% compared to MLR, 42.6%, 47.6%, and 37.9% compared to RF, and 60.2%, 50%, and 56.3% compared to DNN. (3) Proximity to the water system notably influenced forage P variation, with the highest increases observed within 1–2 km of water sources. These findings provide critical insights for optimizing grassland management and improving livestock productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.