The CCR5 chemokine receptor is important for most clinical strains of HIV to establish infection. Individuals with naturally occurring polymorphisms in the CCR5 gene who have reduced or absent CCR5 are apparently otherwise healthy, but are resistant to HIV infection. With the goal of reducing CCR5 and protecting CCR5+ cells from R5-tropic HIV, we used Tag-deleted SV40-derived vectors to deliver several anti-CCR5 transgenes: 2C7, a single-chain Fv (SFv) antibody; VCKA1, a hammerhead ribozyme; and two natural CCR5 ligands, MIP-1a and MIP-1b, modified to direct these chemokines, and hence their receptor to the endoplasmic reticulum. These transgenes were delivered using recombinant, Tag-deleted SV40-derived vectors to human CCR5+ cell lines and primary cells: monocyte-derived macrophages and brain microglia. All transgenes except MIP-1a decreased CCR5, as assayed by immunostaining, Northern blotting, and cytofluorimetry (FACS). Individually, all transgenes except MIP-1a protected from low challenge doses of HIV. At higher dose HIV challenges, protection provided by all transgenes diminished, the SFv and the ribozyme being most potent. Vectors carrying these two transgenes were used sequentially to deliver combination anti-CCR5 genetic therapy. This approach gave approximately additive reduction in CCR5, as measured by FACS and protected from higher dose HIV challenges. Reducing cell membrane CCR5 using anti-CCR5 transgenes, alone or in combinations, may therefore provide a degree of protection from R5-tropic strains of HIV.