The role of NK cells in the control of endogenously arising tumors is still unclear. We monitored activation and effector functions of NK cells in a c‐myc‐transgenic mouse model of spontaneously arising lymphoma. At early stages, tumors demonstrated reduced MHC class I expression and increased expression of natural killer group 2D ligands (NKG2D‐L). NK cells in these tumors showed an activated phenotype that correlated with the loss of tumor MHC class I. With increasing tumor load however, NK‐cell effector functions became progressively paralyzed or exhausted. In later stages of disease, tumors re‐expressed MHC class I and lost NKG2D‐L, suggesting a role of these two signals for NK cell‐mediated tumor control. Testing a panel of lymphoma cell lines expressing various MHC class I and NKG2D‐L levels suggested that NK cell‐dependent tumor control required a priming and a triggering signal that were provided by MHC class I down‐regulation and by NKG2D‐L, respectively. Deleting either of the “two signals” resulted in tumor escape. At early disease stages, immune stimulation through TLR‐ligands in vivo efficiently delayed lymphoma growth in a strictly NK cell‐dependent manner. Thus, NK‐receptor coengagement is crucial for NK‐cell functions in vivo and especially for NK cell‐mediated tumor surveillance.