Primary open-angle glaucoma with elevated intraocular pressure is a leading cause of blindness worldwide. Mutations of myocilin are known to play a critical role in the manifestation of the disease. Misfolded mutant myocilin forms secretion-incompetent intracellular aggregates. The block of myocilin secretion was proposed to alter the extracellular matrix environment of the trabecular meshwork, with subsequent impediment of aqueous humor outflow leading to elevated intraocular pressure. However, the molecular pathogenesis of myocilin-caused glaucoma is poorly defined. In this study, we show that heteromeric complexes composed of wild-type and mutant myocilin were retained in the rough endoplasmic reticulum, aggregating to form inclusion bodies typical of Russell bodies. The presence of myocilin aggregates induced the unfolded protein response proteins BiP and phosphorylated endoplasmic reticulum-localized eukaryotic initiation factor-2␣ kinase (PERK) with the subsequent activation of caspases 12 and 3 and expression of C/EBP homologous protein (CHOP)/GADD153, leading to apoptosis. Our findings identify endoplasmic reticulum stress-induced apoptosis as a pathway to explain the reduction of trabecular meshwork cells in patients with myocilincaused glaucoma. As a consequence, the phagocytotic capacity of the remaining trabecular meshwork cell population would be insufficient for effective cleaning of aqueous humor, constituting a major pathogenetic factor for the development of Glaucoma is a heterogeneous group of optic neuropathies characterized by a progressive degeneration of the optic nerve resulting in an irreversible loss of vision.
1After age-related macular degeneration, it is the second leading cause of severe vision loss or blindness.2 It is expected that ϳ4% of the world population older than the age of 40 will develop glaucoma. Primary open-angle glaucoma (POAG) is the most common form of the disease.2 In most cases of POAG, the aqueous humor outflow from the anterior eye chamber is impeded, resulting in an elevated intraocular pressure (IOP) and causing ganglion cell death in the neural retina.3,4 Hence, impaired outflow drainage along the trabecular meshwork (TM) and Schlemm's canal seems to be central in the pathogenesis of POAG. 3,4