Despite recent advances in preventing sudden cardiac death (SCD) due to cardiac arrhythmia, its incidence in the population at large has remained unacceptably high. Better understanding of the interaction among various functional, structural, and genetic factors underlying the susceptibility to, and initiation of, fatal arrhythmias is a major goal and will provide new tools for the prediction, prevention, and therapy of SCD. Here, we review the role of aberrant intracellular Ca 2+ handling, ionic imbalances associated with acute myocardial ischemia, neurohumoral changes, and genetic predisposition in the pathogenesis of SCD due to cardiac arrhythmia. Therapeutic measures to prevent SCD are also discussed.Sudden cardiac death (SCD) from any cause claims 300,000-400,000 lives a year in the United States. The most common sequence of events leading to SCD appears to be the degeneration of ventricular tachycardia (VT; abnormal acceleration of ventricular rate) into ventricular fibrillation (VF), during which disorganized contractions of the ventricles fail to eject blood effectively, often followed by asystole or pulseless electrical activity. Preexisting coronary artery disease and its consequences (acute myocardial ischemia, scarring from previous myocardial infarction, heart failure) are manifest in 80% of SCD victims. Dilated nonischemic and hypertrophic cardiomyopathies account for the second largest number of SCDs, whereas other cardiac disorders, including congenital heart defects and the known genetically determined ion channel anomalies, account for 5-10% of SCDs (1).While the implantable cardioverter defibrillator (ICD) improves survival in high-risk patients (2), standard antiarrhythmic drug therapy has failed to reduce, and in some instances has increased, the incidence of SCD (3). In fact, the greatest reduction in cardiovascular mortality (including SCD) in patients with clinically manifest heart disease has resulted from the use of beta blockers (4) and non-antiarrhythmic drugs, i.e., those without major direct electrophysiological action in cardiac muscle or the specialized conduction system, such as angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor-blocking agents, lipid-lowering agents, spironolactone, thrombolytic and antithrombotic agents, and perhaps magnesium and omega-3 fatty acids (for review, see ref. 5). These drugs most likely exert their antiarrhythmic potential indirectly by inhibiting or delaying adverse functional and structural remodeling in the diseased heart, i.e., by affecting "upstream events" that contribute to the development of electrophysiological instability.Clinical trials, in general, have failed to define SCD risk markers for specific individuals in the larger general population, where the relative risk of SCD is low but the absolute number of deaths is high. Risk markers include abnormalities in cardiovascular function (left-ventricular ejection fraction), electrocardiographic variables (e.g., late potentials, T-wave alternans, QRS duration, dispersion o...