Besides the enormous medical and economic consequences, national disasters, such as the Wenchuan 8.0 earthquake, also pose a risk to the mental health of survivors. In this context, a better understanding is needed of how functional brain systems adapt to severe emotional stress. Previous animal studies have demonstrated the importance of limbic, paralimbic, striatal, and prefrontal structures in stress and fear responses. Human studies, which have focused primarily on patients with clinically established posttraumatic stress disorders, have reported abnormalities in similar brain structures. At present, little is known about potential alterations of brain function in trauma survivors shortly after traumatic events. Here, we show alteration of brain function in a cohort of healthy survivors within 25 days after the Wenchuan earthquake by a recently discovered method known as ''restingstate'' functional MRI. The current investigation demonstrates that regional activity in frontolimbic and striatal areas increased significantly and connectivity among limbic and striatal networks was attenuated in our participants who had recently experienced severe emotional trauma. Trauma victims also had a reduced temporal synchronization within the ''default mode'' of restingstate brain function, which has been characterized in humans and other species. Taken together, our findings provide evidence that significant alterations in brain function, similar in many ways to those observed in posttraumatic stress disorders, can be seen shortly after major traumatic experiences, highlighting the need for early evaluation and intervention for trauma survivors.neuroimaging ͉ stress ͉ anxiety ͉ depression ͉ posttraumatic stress disorder I n the afternoon on May 12, 2008, the epicenter of a devastating earthquake occurred in Wenchuan, in the Sichuan Province of China. It measured 8.0 on the Richter scale. The most severely affected geographical regions were Yingxiu, Wenchuan, Dujiangyan, and Shifang, where 45 million people were directly affected. Among them, 69,146 people were confirmed dead, 374,131 were seriously injured, and 17,516 are missing. A significant proportion of the survivors (Ϸ20%) (1) are likely to develop stress-related disorders, such as acute stress disorder (ASD) and posttraumatic stress disorder (PTSD). Given the serious and persistent impact of these highly prevalent psychiatric disorders, it is vital to develop a better understanding of the alterations of cerebral function evident in the early stages of adaptation to trauma. Such knowledge may lead to a better understanding of posttraumatic responses and the development of more effective early interventions.Studies of animal models of acute and chronic stress have provided evidence of physiological and morphological changes in several brain regions, including the amygdala, hippocampus, and prefrontal cortex (2, 3). Human studies (4-12) have focused primarily on patients who already have an established psychiatric disorder, such as ASD and PTSD. Despite some inconsis...