BACKGROUND AND PURPOSE:The reliability of contrast-enhanced MRA in monitoring serial volumetric changes of unruptured intracranial aneurysms has not been established. We aimed to determine the coefficient of variance of contrast-enhanced MRA in measuring aneurysm volumes, thus establishing criteria for aneurysm growth and permitting identification of variables predictive of growth.MATERIALS AND METHODS: Aneurysm volumes were measured from serial contrast-enhanced MRA studies of patients with untreated intracranial aneurysms who underwent .2 sequential MR imaging evaluations. After coregistering all sequential studies in 3D space for each aneurysm and signal intensity normalization, aneurysm volume was determined across all time points. A linear mixed effects model was built to estimate the coefficient of variance of the measurement as well as to determine predictive variables. Growth was defined as relative growth exceeding 2 times the measurement coefficient of variance (sudden growth, as 4 times the coefficient of variance).RESULTS: A total of 95 patients with 112 aneurysms were included (5.9 scans during 4.0 years on average, 616 scan measurements in total). The coefficient of variance was 5.5% of the aneurysm volume, and the relative growth rate was dependent on the location: anterior cerebral artery, 4.52% per year; vertebral artery, 2.46% per year; middle cerebral artery, 2.74% per year; basilar artery, 2.36% per year; internal carotid artery, 1.14% per year. Thirty-six of 112 (32%) aneurysms were characterized as growing, and 11/36 of them had an episode of sudden growth.
CONCLUSIONS:Volume measurement of unruptured intracranial aneurysms by contrast-enhanced MRA seems a reliable metric for tracking the growth trajectory of aneurysms. Furthermore, the aneurysm growth rate differs among different locations.