Chemosensing of nutrients in the gastrointestinal tract plays physiologically important roles in the regulation of food intake behaviors, including digestion, absorption, metabolism and other subsequently occurring body functions via brain activation. Free amino acids, liberated from ingested foods, are of course essential nutrients which compose the body proteins and sometimes determine the taste of the food. Glutamate, one of the most abundant amino acids in the foods and the liberated free form, critically contributes to the ‘umami’ taste perception. Recently, it has been revealed that dietary glutamate has many beneficial functions in the gastrointestinal tract. However, the precise mechanism of glutamate sensing still remains unclear. Using primary rat gastric mucosal cell cultures, we demonstrated that somatostatin-secreting D cells are candidate cells for glutamate sensing in the stomach through inhibition of somatostatin release. Considering that somatostatin is one of the major negative regulators of gastric functions, it is suggested that some parts of glutamate’s beneficial effects could be explained by suppression of the inhibitory somatostatin effects, i.e. stimulation, by glutamate.