The liver is unique in its remarkable regenerative capacity, which enables the use of liver resection as a treatment for specific liver diseases, including removal of neoplastic liver disease. After resection, the remaining liver tissue (i.e, liver remnant) regenerates to maintain normal hepatic function. In experimental settings as well as patients, removal of up to two-thirds of the liver mass stimulates a rapid and highly coordinated process resulting in the regeneration of the remaining liver. Mechanisms controlling the initiation and termination of regeneration continue to be discovered, and many of the fundamental signaling pathways controlling the proliferation of liver parenchymal cells (i.e., hepatocytes) have been uncovered. Interestingly, while hemostatic complications (i.e., bleeding and thrombosis) are primarily thought of as a complication of surgery itself, strong evidence suggests that components of the hemostatic system are, in fact, powerful drivers of liver regeneration. This review focuses on the clinical and translational evidence supporting a link between the hemostatic system and liver regeneration, and the mechanisms whereby the hemostatic system directs liver regeneration discovered using experimental settings.