Historical perspectiveHCV was identified by Choo et al. in 1989 using the then-novel approach of molecular cloning instead of classic virus purification (1). Assays to detect HCV antibodies were introduced less than 3 years later - a significant advance that virtually stopped the transmission of HCV via blood transfusions in the US and reduced the incidence of new cases to less than 40,000 per year, most resulting from injection drug use. Less frequent modes of infection include perinatal transmission (estimated to occur in 2%-8% of babies born to HCV-infected mothers) and sexual transmission, which is much less effective for HCV than for other viruses, such as HIV and HBV, and is rare among people in longterm monogamous relationships (2).Despite advances in the prevention of new HCV infection, more than 4 million individuals infected in the US and more than 120 million worldwide are currently chronically infected. About half do not mount a sustained response to the currently available therapy, a combination of pegylated IFN and ribavirin. The incidence of complications from chronic HCV infection, such as cirrhosis and hepatocellular carcinoma, is therefore predicted to increase (3), possibly reaching the same incidence as in Japan, where widespread distribution of HCV occurred decades earlier than in Western countries (4).From the beginning, HCV research has proven challenging. In the absence of tissue culture and small animal models of infection, the first functional HCV cDNA clones had to be tested in chimpanzees (5). Since then, several models have been developed to study the viral life cycle. The first milestone was the generation of selectable subgenomic HCV replicons that self amplified in transfected hepatoma cells (6). Long-term propagation of replicon-harboring cells resulted in selection for HCV adaptive mutations and increased replication efficiency. However, HCV sequences with in vitro selected, adaptive mutations were not infectious. This was overcome by the isolation of the HCV JFH1 strain from a patient with fulminant hepatitis (7). This strain does not require adaptive mutations to replicate efficiently in hepatoma cell lines with defective IFN responses and maintains its in vivo infectivity (8-10). Several models to study HCV binding and entry were developed in parallel. Virus-like particles produced in the baculovirus system (11) and retroviral pseudoparticles with HCV envelope glycoproteins (12, 13) were used as in vitro models, and immunodeficient mice transplanted with human hepatocytes (14) are now available to screen antibodies and antiviral agents in vivo.
The virus and its life cycleHCV is an enveloped, positive-stranded RNA virus and represents the Hepacivirus genus in the Flaviviridae family (15). Six major HCV genotypes and more than 100 subtypes have been identified. In the blood of infected patients, HCV is physically associated with VLDL, LDL, and HDL. Entry into hepatocytes requires the tetraspanin CD81 (16), the scavenger receptor class B type I (17), and the tight junction prot...