Successful replacement of B by C in the series MgB 2-x C x for values of x upto 0.3 are reported. Resistivity and ac susceptibility measurements have been carried out in the samples. Solubility of carbon, inferred from the observed change in the lattice parameter with carbon content indicates that carbon substitutes upto x=0.30 into the MgB 2 lattice. The superconducting transition temperature, T C measured both by zero resistivity and the onset of the diamagnetic signal shows a systematic decrease with increase in carbon content upto x=0.30, beyond which the volume fraction decreases drastically. The temperature dependence of resistivity in the normal state fits to the Bloch-Gruneisen formula for all the carbon compositions studied. The Debye temperatures, θ D , extracted from the fit is seen to decrease with carbon content from 900K to 525K, whereas the electron-phonon interaction parameter, λ, obtained from the McMillan equation using the measured T C and θ D , is seen to increase monotonically from 0.8 in MgB 2 to 0.9 in the x=0.50 sample. The ratio of the resistivities between 300K and 40K versus T C is seen to follow the Testardi correlation for the C substituted samples. The decrease in T C is argued to mainly arise due to large decrease in θ D with C concentration and a decrease in the hole density of states at N(E F ).