The braconid wasp, Spathius agrili, has been released in the U.S. as a biocontrol agent for the invasive emerald ash borer (Coleoptera: Buprestidae: Agrilus planipennis), a destructive pest of ash trees (Fraxinus spp.). We identified and synthesized seven male-specific volatile compounds. Three of these, dodecanal, (4R,11E)-tetradecen-4-olide, and (Z)-10-heptadecen-2-one, were the key behaviorally active components in flight tunnel bioassays. Male specificity was demonstrated by gas chromatographic comparison of male and female volatile emissions and whole body extracts. Identifications were aided by coupled gas chromatographic-mass spectrometric (GC-MS) analysis, microchemical reactions, NMR, chiral GC analysis, and GC and MS comparison with authentic standards. Both the racemic and chiral forms of the γ-lactone, as well as both E- and Z-isomers were synthesized. Flight tunnel behavioral tests showed positive male and female S. agrili responses to both natural pheromone and synthetic blends, with upwind flight and landing on the source. Large field-cage tests, using yellow sticky traps baited with pheromone, captured approximately 50% of the released male and female wasps in 24-h periods. The use of pheromone-baited traps in the field could simplify the current detection method for determining parasitoid establishment (i.e., laboriously felling and peeling ash trees for recovery of S. agrili from infested EAB larvae).