Intraoperative optical coherence tomography (iOCT) represents another milestone in ocular imaging technologies. Now, for the first time, high resolution OCT images are available not only pre- or postoperatively, but also intraoperatively. In recent years, there have been significant advances in iOCT technology - from hand-held probes and mounted systems towards iOCT systems which are fully integrated into the surgical microscope and which provide seamless integration into the workflow. These systems offer high-resolution, intraoperative OCT scans in real-time and provide additional information on microstructures of the retina or the cornea. These findings may even lead to a modification of surgical strategies. Like any other new technology, iOCT technology still has some limitations, such as shadowing from instruments and the lack of eye tracking systems. Therefore, the current state of iOCT technology still requires some skill to track surgical maneuvers in real time. Further research and development will help to solve these limitations in the future. However, even if not required for all surgical procedures, iOCT imaging can already improve safety and control in many surgical procedures on the anterior and posterior segments. This has already been shown in several studies and case series. Particularly in the surgery of vitreomacular traction, peeling of epiretinal membranes (ERM peeling) and macular hole surgery, iOCT offers significant added value. It improves the visualisation of transparent structures and helps to avoid the usage of dyes. In addition the success of the surgical maneuvers can be investigated intraoperatively. In lamellar keratoplasty and glaucoma surgery too, iOCT improves precision and safety. Moreover, iOCT technology may help to achieve further insight into ocular pathologies and a better understanding of the impact of surgical maneuvers on visual rehabilitation. Further prospective studies are however required to evaluate the usefulness of iOCT in various surgical procedures on both, the anterior and posterior segments.