Subacute sclerosing panencephalitis (SSPE) is a fatal disease in children and young adults that is caused by persistent infection of the central nervous system (CNS) by a nonproductive, cell-associated form of measles virus. Using an experimental model for SSPE (LEC viral strain in newborn hamsters), we have shown previously that establishment of such CNS infections involves selective elimination from the CNS of productively infected cells by host defensive mechanisms, coupled with the selective sparing of cells carrying nonproductive viral forms. That interferon (IFN) may play a role in this process was suggested by the disappearance of productively infected cells from the CNS tissues prior to the appearance of antiviral antibodies and by the demonstration of cell-associated, IFN-resistant viral variants in the virus stocks that were used. Results of this study support these conclusions by showing that similar IFN-resistant viral variants are present in the HBS strain of SSPE-derived measles virus and that these variants, in the presence of IFN, have properties that are similar to those of naturally occurring cell-associated'strains of SSPE viruses, e.g., DR, IP3, and Biken. These IFN-resistant forms of HBS virus were isolated and were shown to maintain their resistance to inhibition by IFN after cloning. However, on removal of IFN, they reverted to productive forms similar to the parental HBS virus. The potential role of such viral forms in the pathogenesis of SSPE is discussed.