This manuscript describes initial applications of a unique new intravascular ultrasound imaging catheter. This 5.5F catheter uses an over-the-wire design and incorporates a phased array transducer at its tip. There are no moving parts. A 360 degree image is produced perpendicular to the catheter axis using a 20 MHz center frequency. A dedicated minicomputer is used for initial image processing, as well as enhancement and analysis. Initial studies using phantoms demonstrated excellent accuracy for linear dimensions (r = 0.99, range 3.0 to 7.6 mm, image = 1.0 phantom + 0.1). Serial imaging of the same arterial segment in vitro showed good reproducibility (coefficients of variance 2.5-5.2%). Likewise, intra- and inter-observer variability in image analysis was minimal (r = 0.92-0.99). Initial in vivo studies were performed in dogs. The catheter was easily passed over a wire into mesenteric, cerebral and coronary vessels without evidence of significant vessel trauma. Subsequently, 20 patients had percutaneous coronary imaging performed during cardiac catheterization. Cardiac motion was rarely a problem and acceptable images were obtained in all but two patients. Areas of calcification, mild stenoses, branching vessels and graft atherosclerosis could be identified. We conclude that intracoronary ultrasound imaging will be useful for assessing vascular pathology, for studying both rapid change in vessel size as well as chronic progression or regression of atherosclerosis, and for assisting with new therapeutic interventions.