Abstract:Extremely premature neonates often experience hyperglycaemia, which has been linked to increased mortality and worsened outcomes. Insulin therapy can assist in controlling blood glucose levels and promoting needed growth. This study presents the development of a model-based stochastic targeted controller designed to adapt insulin infusion rates to match the unique and changing metabolic state and control parameters of the neonate. Long-term usage of targeted BG control requires successfully forecasting variations in neonatal metabolic state, accounting for differences in clinical practices between units, and demonstrating robustness to errors that can occur in everyday clinical usage. Simulation studies were used to evaluate controller ability to target several common BG ranges and evaluate controller sensitivity to missed BG measurements and delays in control interventions on a virtual patient cohort of 25 infants developed from retrospective data. Initial clinical pilot trials indicated model performance matched expected performance from simulations. Stochastic targeted glucose control developed using validated patient-specific virtual trials can yield effective protocols for this cohort. Long-term trials show fundamental success, however clinical interface design appears as a critical factor to ensuring good compliance and thus good control.3