Opioid analgesics and maintenance treatments, benzodiazepines and z-drugs, and other sedatives and stimulants are increasingly being abused to induce psychoactive effects or alter the effects of other drugs, eventually leading to dependence. Awareness of prescription drug abuse has been increasing in the last two decades, and organizations such as the International Narcotics Control Board has predicted that, worldwide, prescription drug abuse may exceed the use of illicit drugs. Assessment of prescription drug abuse tackles an issue that is hidden by nature, which therefore requires a specific monitoring. The current best practice is to use multiple detection systems to assess prescription drug abuse by various populations in a timely, sensitive, and specific manner. In the early 2000's, we designed a method to detect and quantify doctor shopping for prescription drugs from the French National Health Data System, which is one of the world's largest claims database, and a first-class data source for pharmacoepidemiological studies. Doctor shopping is a well-known behavior that involves overlapping prescriptions from multiple prescribers for the same drug, to obtain higher doses than those prescribed by each prescriber on an individual basis. In addition, doctor shopping may play an important role in supplying the black market. The paper aims to review how doctor shopping monitoring can improve the early detection of prescription drug abuse within a multidimensional monitoring. The paper provides an in-depth overview of two decades of development and validation of the method as a complementary component of the multidimensional monitoring conducted by the French Addictovigilance Network. The process accounted for the relevant determinants of prescription drug abuse, such as pharmacological data (e.g., formulations and doses), chronological and geographical data (e.g., impact of measures and comparison between regions), and epidemiological and outcome data (e.g., profiles of patients and trajectories of care) for several pharmacological classes (e.g., opioids, benzodiazepines, antidepressants, and methylphenidate).