Intriguing sets of vertices have been studied for several classes of strongly regular graphs. In the present paper, we study intriguing sets for the graphs Γ n , n ≥ 2, which are defined as follows. Suppose Q(2n, 2), n ≥ 2, is a nonsingular parabolic quadric of PG(2n, 2) and Q + (2n − 1, 2) is a nonsingular hyperbolic quadric obtained by intersecting Q(2n, 2) with a suitable nontangent hyperplane. Then the collinearity relation of Q(2n, 2) defines a strongly regular graph Γ n on the set Q(2n, 2) \ Q + (2n − 1, 2). We describe some classes of intriguing sets of Γ n and classify all intriguing sets of Γ 2 and Γ 3 .