Resonant x-ray diffraction revealing chemical disorder in sputtered L10 FeNi on Si(0 0 1). Physics: Condensed Matter, 28(40) Abstract. In the search for new rare earth free permanent magnetic materials, FeNi with the L1 0 structure is a possible candidate. We have synthesized the phase in thin film form by sputtering onto HF-etched Si(001) substrates. Monatomic layers of Fe and Ni were alternately deposited on a Cu buffer layer, all of which grew epitaxially on the Si substrates. A good crystal structure and epitaxial relationship was confirmed by in-house X-ray diffraction (XRD). The chemical order, which to some part is the origin of an uniaxial magnetic anisotropy, was measured by resonant XRD. The 001 superlattice reflection was split in two symmetrically spaced peaks due to a composition modulation of the Fe and Ni layers. Furthermore the influence of roughness induced chemical anti-phase domains on the RXRD pattern is exemplified. A smaller than expected magnetic uniaxial anisotropy energy was obtained, which is partly due to the composition modulations, but the major reason is concluded to be the Cu buffer surface roughness.
Journal of