Piezoelectricity allows precise and robust conversion between electricity and mechanical force, and arises from the broken inversion symmetry in the atomic structure [1][2][3] . Reducing the dimensionality of bulk materials has been suggested to enhance piezoelectricity 4 . However, when the thickness of a material approaches a single molecular layer, the large surface energy can cause piezoelectric structures to be thermodynamically unstable 5 . Transition-metal dichalcogenides can retain their atomic structures down to the single-layer limit without lattice reconstruction, even under ambient conditions 6 . Recent calculations have predicted the existence of piezoelectricity in these two-dimensional crystals due to their broken inversion symmetry 7 . Here, we report experimental evidence of piezoelectricity in a free-standing single layer of molybdenum disulphide (MoS 2 ) and a measured piezoelectric coefficient of e 11 = 2.9 × 10 -10 C m −1 . The measurement of the intrinsic piezoelectricity in such free-standing crystals is free from substrate effects such as doping and parasitic charges. We observed a finite and zero piezoelectric response in MoS 2 in odd and even number of layers, respectively, in sharp contrast to bulk piezoelectric materials. This oscillation is due to the breaking and recovery of the inversion symmetry of the two-dimensional crystal. Through the angular dependence of electromechanical coupling, we determined the two-dimensional crystal orientation. The piezoelectricity discovered in this single molecular membrane promises new applications in low-power logic switches for computing and ultrasensitive biological sensors scaled down to a single atomic unit cell 8,9 .Since its discovery in 1880, piezoelectricity has found a wide range of applications in actuation, sensing and energy harvesting. The rapidly growing demand for high-performance and miniaturized devices in micro-electro-mechanical systems (MEMS) and electronics 10-12 calls for nanoscale piezoelectric materials, motivating theoretical investigations into novel low-dimensional systems such as nanotubes and single molecules 13,14 . Transition-metal dichalcogenides (TMDCs) are ideal candidates as low-dimensional piezoelectric materials because of their structural non-centrosymmetry 7 . Although there has been extensive research interest in the unique properties originating from such symmetry breaking, including circular dichroism and second harmonic generation (SHG) [15][16][17][18][19] , experimental quantitative determination of the intrinsic piezoelectric properties of these two-dimensional crystals has yet to be demonstrated. Here, we report the observation of piezoelectricity in freestanding monolayer MoS 2 membranes. Interestingly, we found that this molecular piezoelectricity only exists when there are an odd number of layers in the two-dimensional crystal where inversion symmetry breaking occurs. We observed an angular dependence of the piezoelectric response in agreement with the three-fold symmetry of the crystal, and based...