The use of magnetically-actuated catheters has the potential to facilitate minimally-invasive surgical procedures. In this work we present a magnetically-actuated tentacle catheter for object manipulation in remote areas of human body. The catheter employs a bio-inspired technique of underactuated grasping. The whole body of the catheter loops around the target object, providing form closure necessary for manipulation. The catheter employs a permanent magnet to steer the position of its tip, and an electromagnetic coil to strengthen the maximum force applicable to the target object. We test the catheter in a series of proof-of-concept experiments. In a thermal study, we show that within the operational conditions, the heat dissipated by the coil allows for safe operation of tentacle catheter within human body. Subsequently, we characterise the maximum force available for manipulation using force sensor. The tentacle catheter can apply forces up to 0.1 N, which is in accordance with finite-element simulation. This force is sufficient for object manipulation in surgical tasks, such as biopsy. Finally, we demonstrate the operation of the tentacle catheter in a task involving manipulation of porcine tissue.