Introducing CNN-LSTM network adaptations to improve remaining useful life prediction of complex systems
N. Borst,
W.J.C. Verhagen
Abstract:Prognostics and Health Management (PHM) models aim to estimate remaining useful life (RUL) of complex systems, enabling lower maintenance costs and increased availability. A substantial body of work considers the development and testing of new models using the NASA C-MAPSS dataset as a benchmark. In recent work, the use of ensemble methods has been prevalent. This paper proposes two adaptations to one of the best-performing ensemble methods, namely the Convolutional Neural Network – Long Short-Term Memory (CNN… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.