CUDA Fortran for Scientists and Engineers 2014
DOI: 10.1016/b978-0-12-416970-8.00001-8
|View full text |Cite
|
Sign up to set email alerts
|

Introduction

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 0 publications
0
2
0
Order By: Relevance
“…The governing equations are advanced in time by means of a hybrid third-order low-storage Runge–Kutta algorithm, whereby the diffusive terms are handled implicitly, and convective terms are handled explicitly. The code was adapted to run on clusters of graphic accelerators (GPUs), using a combination of CUDA Fortran and OpenACC directives, and relying on the CUFFT libraries for efficient execution of fast Fourier transforms (Ruetsch & Fatica 2014; Pirozzoli et al. 2021).…”
Section: Methodsmentioning
confidence: 99%
“…The governing equations are advanced in time by means of a hybrid third-order low-storage Runge–Kutta algorithm, whereby the diffusive terms are handled implicitly, and convective terms are handled explicitly. The code was adapted to run on clusters of graphic accelerators (GPUs), using a combination of CUDA Fortran and OpenACC directives, and relying on the CUFFT libraries for efficient execution of fast Fourier transforms (Ruetsch & Fatica 2014; Pirozzoli et al. 2021).…”
Section: Methodsmentioning
confidence: 99%
“…In order to minimize numerical errors associated with implicit time stepping, explicit and implicit discretizations of the azimuthal convective terms are blended linearly with the radial coordinate, in such a way that near the pipe wall, the treatment is fully explicit, and near the pipe axis, it is fully implicit. The code was adapted to run on clusters of graphic accelerators (GPUs), using a combination of CUDA Fortran and OpenACC directives, and relying on the CUFFT libraries for efficient execution of fast Fourier transforms (Ruetsch & Fatica 2014).…”
Section: The Numerical Datasetmentioning
confidence: 99%